Innovative Personalised Apps to Motivate and Support Behavioural Energy Efficiency

Konstantinos Koasidis
School of Electrical and Computer Engineering
National Technical University of Athens
kkoasidis@epu.ntua.gr

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No [2566].
Overview

Energy Behaviours

- Cooperatives
- Prosumers/Net metering
- Decentralized Energy
- Energy Democracy
- Micro-Grids
- Blockchain
- Digital Coins

Urban Environment
Energy Cooperatives

“Energy cooperatives are organizations that manage activities along the energy value chain”
Debor (2014)

REScoop MECISE

MECISE stands for: Renewable Energy Cooperatives Mobilizing European Citizens In Sustainable Energy.
Energy Cooperatives

<table>
<thead>
<tr>
<th>Business goals of energy cooperatives</th>
<th>Total number of energy cooperatives</th>
<th>Number of energy cooperatives with a primary focus on renewable energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy production/investors in energy production</td>
<td>701</td>
<td>690</td>
</tr>
<tr>
<td>Implementation & operation of small district heating systems</td>
<td>148</td>
<td>148</td>
</tr>
<tr>
<td>Marketing & trading of energy</td>
<td>67</td>
<td>19</td>
</tr>
<tr>
<td>Marketing & installation of energy technology</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>Operation of electricity grid or natural gas network</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Energy services</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>Acquisition or marketing of biomass</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Not possible to determine business goal</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Production & marketing of biofuel</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>E-mobility</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Lobbying & networking</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Operation of fuel station</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Research & development</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Shareholder of municipal energy provider</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: German energy cooperatives differentiated according to their core business goals as of April 2014 (more than one category per cooperative is possible). Debor, Sarah (2014)

Simple Business Models

Most energy co-ops focus on energy production
Energy Cooperatives
The example of Middelgrundens

- Cooperative in Denmark (1996)
- Around 8,500 members
- Owns 10 from the 20 turbines of the offshore park
- The cooperative produces earnings for the shareholders

The Danish Energy Policy adopted an energy transition approach.
Energy Cooperatives
Ελληνικό νομικό πλαίσιο

(Ν. 4513/2018)
Εντάσσει τις ενεργειακές κοινότητες ως αστικούς συνεταιρισμούς

Άνοιγμα αγοράς σε φυσικά πρόσωπα ΝΠΙΔ,ΝΠΔΔ, ΟΤΑ

Δυνατότητα σε ΟΤΑ για άσκηση κοινωνικής πολιτικής

➢ Ενεργειακή Δημοκρατία
➢ Ενεργειακή Αυτονομία
➢ Αποκεντρωμένη Παραγωγή

Μη κερδοσκοπικού σκοπού κοινότητες
Αυτοσκοπός η βελτίωση της ποιότητας ζωής των μελών της

Κερδοσκοπικού σκοπού κοινότητες

➢ Ενεργειακή Δημοκρατία
➢ Ενεργειακή Αυτονομία
➢ Αποκεντρωμένη Παραγωγή
“Prosumers are agents that both consume and produce electricity. “

Parag & Sovacool (2016)
Blockchain

“Blockchain is an information storage and transmission technology for data and transactions that uses a secure, distributed registry (ledger)”

Advantages:
- Security
- Immutability
- Availability and transparency
- Ability to automate processes that are currently time-consuming, at reduced cost
Blockchain
Applications on the energy sector

10%
- Metering
 - Data exchange between stakeholders of Smart Grid applications, intelligent control systems, as well as the standardization of data transfers

20%
- Grid management
 - Value exchanged between devices in the form of data, network access, currencies, compute cycles, contracts for ongoing service, trusted introductions to other devices

40%
- Decentralized Generation
 - Real-time metering of on-site energy generation and P2P transaction management

20%
- EV Charging
 - Develop EV Charging platforms that use Blockchain-based smart contracts to authenticate users and manage the billing process

10%
- IOT
 - Continuous identification of new applications of Blockchain for IoT and the Connected Home markets
Blockchain

Brooklyn Microgrid (peer-to-peer power trading)

Mengelkamp et al. (2018)
“Μια πρόσφατη εκτίμηση της συνολικής ετήσιας κατανάλωσης ενέργειας Bitcoin ανέρχεται προσεγγιστικά στις 30 TWh. Η κατανάλωση αυτή αντιστοιχεί στο 0,15% της ετήσιας κατανάλωσης ηλεκτρικής ενέργειας στον κόσμο.”

Χ. Δούκας, Π. Ξυδώνας (2018)

Proof of Work vs. Proof of Stake

<table>
<thead>
<tr>
<th>Proof of Work</th>
<th>Proof of Stake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block reward given to first miner</td>
<td>Chance of solving block proportionate to staked wealth</td>
</tr>
<tr>
<td>More computing power = more mining power</td>
<td>More wealth = more mining power</td>
</tr>
<tr>
<td>High energy cost</td>
<td>Low energy cost</td>
</tr>
<tr>
<td>Miners pool and mining becomes centralized</td>
<td>Mining is decentralized</td>
</tr>
<tr>
<td>Must provide proof to solve block</td>
<td>Must stake wealth to solve block</td>
</tr>
<tr>
<td>Miner receives block reward</td>
<td>Validator receives block transaction fees</td>
</tr>
</tbody>
</table>

Source: https://powercompare.co.uk/bitcoin/

The map above shows which countries consume less electricity than the amount consumed by global bitcoin mining.
Energy Coins
Solarcoin – Energy Cryptocurrency

€0.0039 -35.39%

Energy generation enables circulating SolarCoins
Energy Coins
NRGCoin – Academic Approach

(Mihaylov et al., 2014)
Create a loyalty program where participants receive bonuses in the form of a virtual energy currency for saving energy.
Digital Energy Currency Approach

Static (one-way) incentive

- Incentive
 - Fixed monetary incentive
 - Prize
 - Voucher

- Action
 - Triggered behavioural energy efficiency
 - Does everyone respond to an incentive?

Dynamic (cyclic) incentive

- Incentive
 - Incentive triggers behavioural energy efficiency

- Action
 - Behavioural energy efficiency defines the incentive

Better User Engagement

Research Gap 1

Research Gap 2
Digital Energy Currency Principles

Incentives on behavioural economics

1. Subsidise efficient behaviour
2. Penalise non-efficient behaviour
3. Provide the opportunity to trade the rights
Digital Energy Currency Mechanism

\[C_{i,l} = p \times \frac{B_T}{EST} \times \left(0.5 \times \frac{\sum_{j=1}^{N} \left(\sum_{i=1}^{K} \left[(\sum_{l=1}^{24} E_{ij,l}) - (c_c - c_b)(l-1) \right] \right)}{\sum_{i=1}^{K} \left[(\sum_{l=1}^{24} B_{i,l}) \times \frac{B_T}{EST} \right] \times e - C_{i,l-1} \times (c_c - c_b)(l-1)} + 0.5 \times \frac{\sum_{j=1}^{N} \sum_{i=K-5}^{K} \sum_{l=1}^{24} E_{ij,l}}{\sum_{i=K-5}^{K} \sum_{l=1}^{24} B_{i,l}} \right) \]
Case Study 1: Bahrain

Research Question
Assuming an energy efficient behaviour, can the ATOM mechanism produce a financial reward for the citizens in Bahrain?
Case Study 1: Bahrain

General information

- Island country in the Persian Gulf
- Population: **1,494,090** (2017)
- Total consumption: **16,559 GWh** (50% domestic sector)

<table>
<thead>
<tr>
<th>Energy Mixture</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural oil/Fuel oil (OCGT+CCGT+ST)</td>
<td>3920 MW</td>
</tr>
<tr>
<td>Wind</td>
<td>2 MW</td>
</tr>
<tr>
<td>Solar</td>
<td>4 MW</td>
</tr>
<tr>
<td>Interconnection</td>
<td>600 MW</td>
</tr>
</tbody>
</table>
Case Study 1: Bahrain

Demographic Estimations (UN Household Size And Composition around the World 2017)

- Number of households around 250,000
- Average household size 5.9
- Distribution of size of household (according to number of members):

![Distribution Chart]

- Percentage
- No. of members
- 1 2 3 4 5 6 7 8 9 10 11 12
Case Study 1: Bahrain

Business-as-usual (baseline scenario)

Average out of sample error: **6.7% (MAPE)**
Case Study 1: Bahrain

Scenario

- Number of households around **250,000**
- Bahrain adopted an energy saving target of 6% by 2025. We simulate the real energy consumption of the participants by using random number following a normal distribution around 94% of the predicted with a standard deviation of 10%
- Anticipated savings: **539.8 GWh**
- Budget: 50,000,000 $
- reg = 0.093 $/kWh
- \(p_{kWh} = 29\text{ fils/kWh} \times 0.0027 $/\text{fil} = 0.0783 $/kWh \)
Case Study 1: Bahrain

Results

Energy saved from the scenario: **691.5 GWh** > Anticipated

<table>
<thead>
<tr>
<th>Ratio Statistics</th>
<th>max</th>
<th>0.102679</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>0.075570</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>0.089813</td>
</tr>
</tbody>
</table>

Average ratio > \(p_{\text{kWh}} \)
Case Study 1: Bahrain

Results

✓ Progressive earnings of a random household with 6 members (around the estimated average) taking account the change of the rate and the penalties
Case Study 1: Bahrain

Results

More consumption
More capability for savings
Greater Profit
More variance
Case Study 2: Greek residential sector

Research Question
Should monetisation of behavioural change be considered as a policy measure to support energy management in the residential sector?
Case Study 2: Greek residential sector

Methodology

1. **ATOM**
 - Digital energy currency for behavioural energy efficiency

2. **Scenario parameterisation**
 - Population, Socio-economic assumptions, Building stock

3. **BAU Household Consumption Scenario**

4. **DREEM**
 - Demand side management model for building simulations

5. **Consumption under Behavioural Energy Efficiency Scenario**

6. **Monetising behavioural change to support energy efficiency in the residential sector**

7. **Integrated behavioural energy modelling simulation**

8. **Step 4**
 - **Scientific Outcomes**
 - Quantification of behavioural patterns in monetary terms
 - **Policy Outcomes**
 - Insights for policy implications on the national and household level
Case Study 2: Greek residential sector

Baseline Scenario

Climate Zone B

Climate Zone C

<1980
1980>

4 reference typologies simulated in DREEM: https://webtool.building-typology.eu/#bm

Then aggregated to the national level: ~4 million households
Case Study 2: Greek residential sector

Behavioural energy efficiency scenario

Households can adjust an analog non-programmable thermostat (€20) from 3 to 6 hours a day based on the profile of the household and the day.

Stochastic nature accounts for the existing variation in the thermostats’ setpoints set by different users.
Case Study 2: Greek residential sector

Results – Energy Efficiency Implications

- Estimated **5.3%** energy savings on a **national level**
- Potential of **10%** on the **household level**
Case Study 2: Greek residential sector

Results – Monetary Implications

✓ Average household earnings: €200
✓ Cross-reference with literature: Reward can be found adequate for certain groups of end-users (e.g., low-income)
✓ Behavioural patterns quantified and monetized:
 o Peak load hours
 o Higher potential during weekends
 o Higher potential during winter months (heating-focused action implemented)
Conclusions

✓ Energy cooperatives are an innovative mechanism that involves the public in the decision-making process of a more democratic and decentralized energy system.

✓ Digital energy currencies can play an important role in further engaging end-users toward behavioural energy efficiency, without significant costs.

✓ Possible **10% behavioural energy efficiency potential** with a specific energy management action. Potential for the full set of actions could even reach up to **20%**.

✓ Monetisation is found to provide a lucrative incentive (€200) for certain categories of end-users to actively reduce their energy consumption.

✓ It also allows to quantify important social aspects in monetary units to then feed modelling exercises in support of energy policymaking.

✓ Engaging citizens through surveys and other forms of deliberation or **field studies** could help provide additional empirical data on the level of incentives each citizen group considers adequate
References

Innovative Personalised Apps to Motivate and Support Behavioural Energy Efficiency

Visit us

https://atomcoin.gr/
contact@atomcoin.gr

Konstantinos Koasidis
School of Electrical and Computer Engineering
National Technical University of Athens
kkoasidis@epu.ntua.gr